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Mass transport under partially reflected waves in a rectangular channel is studied. The 
effects of sidewalls on the mass transport velocity pattern are the focus of this paper. 
The mass transport velocity is governed by a nonlinear transport equation for the 
second-order mean vorticity and the continuity equation of the Eulerian mean velocity. 
The wave slope, ka, and the Stokes boundary-layer thickness, k(v/cr)i, are assumed to 
be of the same order of magnitude. Therefore convection and diffusion are equally 
important. For the three-dimensional problem, the generation of second-order 
vorticity due to stretching and rotation of a vorticity line is also included. With 
appropriate boundary conditions derived from the Stokes boundary layers adjacent to 
the free surface, the sidewalls and the bottom, the boundary value problem is solved 
by a vorticity-vector potential formulation; the mass transport is, in general, 
represented by the sum of the gradient of a scalar potential and the curl of a vector 
potential. In the present case, however, the scalar potential is trivial and is set equal to 
zero. Because the physical problem is periodic in the streamwise direction (the direction 
of wave propagation), a Fourier spectral method is used to solve for the vorticity, the 
scalar potential and the vector potential. Numerical solutions are obtained for different 
reflection coefficients, wave slopes, and channel cross-sectional geometry. 

1. Introduction 
Mass transport is a steady Lagrangian current generated by wave motions. These 

steady flows, although small in magnitude, are important in determining the migration 
of sediment near the seabed and of pollutant in the water column. Moreover, in the surf 
zone the vertical structure of the on-offshore mean velocity component plays an 
important role in transferring mean momentum flux in the longshore direction for 
generation of longshore currents. 

The mass transport velocity pattern under a partially reflected wave train has been 
studied by many researchers, using various analytical, perturbation and direct 
numerical approaches (e.g. Longuet-Higgins 1953 ; Riley 1965; Haddon & Riley 1983 ; 
Iskandarani & Liu 1991). The physics for the generation of mass transport under a 
two-dimensional wave is fairly well understood. Because of viscous effects the mean 
shear stress inside the Stokes boundary layer adjacent to the solid bottom is not 
negligible. Consequently, a second-order (in the wave slope) mean velocity is generated 
inside the Stokes boundary layer and persists at the outer edge of the boundary layer. 
The free-surface Stokes boundary layer is weaker than the bottom boundary layer 
because the stress-free condition, instead of the no-slip condition, is required on the 
free surface. Nevertheless, a second-order mean vorticity is also induced at the outer 
edge of the three-surface boundary layer (Liu 1977). The residual mean vorticities at 
the outer edge of Stokes boundary layers are diffused into the water column in the core 
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region and are also advected by the mean velocity. In the very unusual situation where 
the wave amplitude is much smaller than the Stokes boundary-layer thickness, 
diffusion dominates and convection is negligible. Hence the problem is linearized and 
analytical conduction solutions can be obtained (Longuet-Higgins 1953). In more 
practical situations the wave amplitude is greater than the boundary-layer thickness. 
Both convection and diffusion are important and numerical solutions are usually 
required (Iskandarani & Liu 1991). 

Many attempts have been made to verify theoretical and numerical mass transport 
solutions for two-dimensional waves in wave tank experiments (e.g. Russell & Osorio 
1958; Mei, Liu & Carter 1972; Bijker, Kalwijk & Pieters 1974). The comparisons of the 
experimental and theoretical results showed a large scatter. Mei et al. (1972) also 
showed complicated three-dimensional mean circulation patterns in their wave tank 
study for standing waves and partially reflected waves. Among many possibilities, the 
effects of the sidewalls could be the major cause of the three-dimensional circulation 
patterns and of the discrepancies between experimental data and two-dimensional 
theoretical solutions. Iskandarni & Liu (1993) considered the side-wall effects for a 
progressive wave train. Because of the uniformity of the mass transport in the direction 
of wave propagation, the problem can be reduced to a two-dimensional one on the 
plane normal to the wave propagation direction. They solved the problem numerically 
using a stream function-vorticity approach and demonstrated the significant role 
played by the sidewalls in determining the mass transport pattern. 

In most wave tank experiments the reflection from the beach (or other types of 
energy dissipators at one end of the tank) cannot be completely eliminated. In other 
experiments weakly reflected waves are intentionally generated for practical appli- 
cations (Mei et al. 1972; Hara & Mei 1987). Therefore, a partially reflected wave train 
frequently exists in a wave tank. The associated mass transport velocity pattern is 
three-dimensional, and periodic in the direction of wave propagation. It is the objective 
of the present paper to develop an algorithm to examine the three-dimensional mass 
transport under partially reflected waves in a rectangular channel. The sidewall effects 
will be the focus of the investigation. Wave parameters, such as the wave slope and the 
reflection coefficient, and the aspect ratio of the channel will be varied. 

Consider a partially reflected wave train propagating in a wave flume with a 
rectangular cross-section. Using the characteristic wave period, g-’, as the timescale, 
wavelength, k-l, as the lengthscale, and the characteristic wave amplitude, a, as the 
scale for wave motions, the leading-order solutions, O(a) = O(ka), for the free-surface 
displacement, <, and the irrotational velocity components, (ul, ol, w,), which are of 
O(va), can be expressed in the following dimensionless forms: 

g = (eiz + Re-’%) e-it, (1) 

1 cosh(z+h) iz 
U =  (e -Repi”), 

sinh h 

v =  0, 

= - i sinh ( z  + h)  
(e +Repix), 1 

sinh h 

(3) 

in which R denotes a complex reflection coefficient, 0 < IRI < 1. The partially reflected 
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wave train propagates forwards and backwards in the x-direction. The no-flux 
boundary conditions on the bottom of the channel, z = -h ,  and on the sidewalls, 
y = 0, b, are satisfied by the first-order potential flow field. 

To satisfy the no-slip condition along the sidewalls and the bottom of the tank and 
the no-stress condition on the free surface, Stokes boundary layers exist adjacent to the 
boundaries. The boundary-layer solutions are well known and will not be repeated here 
(e.g. see Mei & Liu 1973). 

In the following sections, we will first discuss the governing equations and boundary 
conditions for the mass transport velocity in a rectangular channel. A vorticity-vector 
potential formulation is introduced by representing the mass transport velocity as the 
sum of the gradient of a scalar potential and the curl of a vector potential. Because of 
the periodicity of the mass transport velocity in the direction of wave propagation, a 
Fourier spectral method is used to solve for the harmonic cofnponents of mean 
vorticity, vector potential and the mass transport velocity. The scalar potential is a 
trivial solution for the wave channel case and is set to be zero. Numerical solutions are 
obtained for different wave parameters, i.e. wave slopes and reflection coefficients, and 
geometrical parameters, i.e. the depth-to-width ratio of the rectangular channel. 
Numerical results are compared to existing theoretical and experimental data for 
special cases. 

2. Governing equations for mass transport 
The governing equations for the second-order O(a2), mass transport velocity, v,, 

can be written in terms of the transport equation for the second-order steady vorticity 
(Dore 1976): 

Because the mass transport is a Lagrangian quantity, the Eulerian streaming velocity 
v is related to urn through (Longuet-Higgins 1953) 

S2V2W+V x (v,  x 0) = 0. (4) 

v = v,-vv,, (5 )  

in which us, the Stokes drift, represents the cumulative drift velocity experienced by a 
fluid particle moving through a non-uniform flow field. The steady vorticity w is also 
an Eulerian quantity and is defined in terms of the streaming velocity 

w = v x v ,  (6) 

v*v = 0. (7) 

and the latter satisfies the continuity equation 

In the vorticity transport equation (4), the parameter 6 describes the ratio of the 
thickness of the Stokes boundary layer to the wave amplitude, i.e. 

Diffusion dominates when a2 is larger; the governing equation can then be linearized 
by discarding the nonlinear terms. On the other hand, when S2 is small the balance 
between diffusion and convection can be achieved within a small region, O(S), in the 
vicinity of the Stokes layers. In a typical laboratory set-up, the parameter S is of 
O(10-l). Hence the full nonlinear equation (4) will be solved in conjunction with (6), 
(7) and appropriate boundary conditions. 
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The Stokes drift us can be expressed in terms of the first-order velocity field as 
follows : 

t 

U ,  = jto U ,  dt ' .  Vul, (9) 

in which the overbar denotes the time average over a characteristic wave period. For 
the partially reflected wave train, given in (2) and (3), the Stokes drift can be calculated 
as 

(1 - RR*h 0, o), cosh 2(z + h) 
2 sinh' h us = (us, V S ,  w,) = 

where the asterisk indicates the complex conjugate. The Stokes drift is unidirectional 
and divergence free. 

3. Boundary conditions for mass transport 
To obtain solutions for the Eulerian streaming and the associated steady vorticity in 

the core region, boundary conditions must be specified along the outer edge of the 
Stokes layers adjacent to the free surface, the sidewalls and the bottom. These 
conditions can be readily obtained from the existing theories (e.g. Mei 1989; Liu 1977). 

3.1. Boundary conditions on the free surface (z = 0)  
Liu (1977) studied the three-dimensional free-surface boundary layer and showed that 
the horizontal components of the wave-induced steady vorticity at the outer edge of the 
Stokes layer are 

where Im denotes the imaginary part. Using the leading-order velocity in (3), we find 
the boundary conditions for the mean vorticity components on the free surface : 

sinh 2h 
sinh' h 

w " = O ,  d=-(l-RR*) on z = O .  

Note that both vorticity components vanish for a standing wave, i.e. R = 1. For the 
steady flow the mean free surface (z = 0) is a material surface; therefore the vertical 
mean velocity vanishes 

w = O  on z = O .  (13) 

3.2. Boundary conditions on the central plane ( y  = ib) 
In the rectangular channel the mass transport velocity is symmetric with respect to the 
central plane, y = ib. Because of the symmetry only one half of the channel is 
considered, 0 < y < ib. The following conditions for the second-order streaming 
velocity must be true on the central plane: 

au  a w  

aY aY 
- = o ,  v = o ,  - = O  on y = @  (14) 
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Consequently, the steady vorticity must satisfy the following boundary conditions : 

3.3. Boundary conditions on the bottom (z = -h)  

Mei (1989) presented formulae for the steady streaming at the outer edge of the Stokes 
layer near the bottom: 

w = 0, 

in which Re denotes the real part. For the partially reflected wave train the streaming 
velocity can be specifically written as 

I on z = - h .  
[ - iR ePizx + (1 - RR*) + iR* 

3 
4 sinh2 h 

u=- 

v = w = o  I 
For the progressive wave case (R = 0) the streaming velocity is in the direction of wave 
propagation. On the other hand, under a standing wave (R = I), the streaming velocity 
diverges from the nodal points (x = (n  + $)n, n = 0, 1,2, . . .) and converges at the anti- 
nodal points (x = nn, n = 0,  1,2, ...). 

3.4. Boundary conditions at the sidewall ( y  = 0)  
The sidewall is located at y = 0. Along the outer edge of the Stokes layer the Eulerian 
streaming can be obtained by substituting W and z for V and y in (16), respectively. 
Using (3) in the resulting formulae, we obtain 

(l+RR*) J sinh 2(z + h)  
4 sinh2 h 

w z -  

Note that a negative (downwards) vertical velocity exists independent of the reflection 
coefficient. In the streamwise direction the streaming vanishes for progressive waves. 
For a standing wave the steady streaming moves from the nodal points to the anti- 
nodal points, which is the same as the flow direction outside of the bottom Stokes layer. 

4. Vorticity-vector potential formulation for mass transport 
For the channel problem, the Stokes drift (10) is divergence free, i.e. V - v ,  = 0. 

Therefore from (5) and (7) the mass transport velocity v, is also a solenoidal vector, 

v.v, = 0. 
5 

(19) 
F L M  266 
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FIGURE 1. Comparisons between analytical and numerical solutions for the streamwise mass 
transport velocity u, on the central plane ( y / b  = 0.5) for large S: -, analytical solutions for infinite 
6 ;  000, numerical solutions for 6 = 5 x lo5; ----, numerical solutions for S = 0.1. The cross-section 
of the channel is a square (b/h = 1, h = 1). 
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urn urn 

FIGURE 2. Verification of the present numerical scheme with known two-dimensional numerical 
solutions for u, at x = in, y / b  = 0.5, with S = 0.1: 000, two-dimensional solutions (Iskandarani & 
Liu 1991); -, two-dimensional solutions of the present scheme without the sidewall effects; ---, 
three-dimensional numerical solutions of the present scheme including the sidewall effects : (a) 
R = 0.5, (b) R = 1.0. 

Thus v, can be expressed in terms of a scalar potential # and a vector potential v 
(Hirasaki & Hellums 1968, 1970): 

with 

Urn = O#+O x v, 
V2# = 0. 

Hirasaki & Hellums (1970) have also demonstrated that a unique solenoidal vector 
potential t + ~  exists. Upon taking the curl of (20), one obtains a Poisson equation for v :  

0, = 0+0, = -VZv/, (22) 

in which the steady streaming vorticity associated with the Stokes drift can be 
calculated from (10) : 

sinh 2(z + h) 
0, = (o:,o~,o:) = 0, ( sinh2h 

and only the spanwise component is non-zero. 
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FIGURE 3. Comparison between experimental data and theoretical solutions for urn; kh = 2.56, 
b = 76 cm, h = 13 cm, S = 0.059: ---, Longuet-Higgins' two-dimensional solutions (1953); 
0 0 0, experimental data (Mei et al. 1972) on the central plane; -, present results on the central 
plane. 

-1.5 -0.5 0 0.5 1 .o 
urn urn 

FIGURE 4. Comparison between experimental data and theoretical solutions for u,; kh = 1.02, 
S = 0.034: symbols are experimental data (Mei et al. 1972); ---, Longuet-Higgins' two-dimensional 
solutions (1953); -, present results: (a) 5 cm from the sidewall; (b) the central plane. 

Instead of solving (4), (6) and (7) for o and u, we plan to solve (4), (21) and (22) for 
o, 4 and w. From the boundary conditions presented in the previous section the mass 
transport associated with a partially reflected wave train must be periodic in the 
streamwise direction (the x-direction). Hence the dependent variables can be expressed 
in a Fourier expansion: 

Substituting the Fourier expansion for 4 into the Laplace equation (21), we obtain 

C72P;n+s -4n2yn = 0, n = 0, 1, &2, ..., + N .  a y  a 2 2  
(25) 

5-2 



128 J. Wen and P. L.-F. Liu 

1.0 :, 

.\-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
~\ 

\ .  '._.-,-.-,-.-.-.-.- . - - - - _ _ _ _ _ - -  
-0.5' ' ' ' ' ' ' ' ' ' ' - O S i  ' ' ' ' ' ' ' ' ' 

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 

Ylb Ylb 

Ylb 
FIGURE 5. Spanwise profiles of u, at several different elevations on the plane x = -in, in a rectangular 
channel with a square cross-section: -, z /h  = -0.8; ---, z /h  = -0.5; ----, z / h  = -0.2; 
- - - - -  , z /h  = 0 :  (a) R = 0 ;  (b) R = 0.5; (c) R = 1.0. 

The boundary conditions derived in the previous section show that the normal mass 
transport velocity component vanishes along the entire boundary : the free surface, the 
sidewall, the bottom and the central plane. This implies that from (20) 

where n denotes the unit normal along the boundaries. We require that 

along the boundaries and the components of v/  tangential to the boundaries be zero 
along these boundaries. From the solenoidal condition for v / ,  V .  v/  = 0, the normal 
derivative of the normal component of the vector potential must vanish along the 
boundaries such that (26) is satisfied. Specifically, these conditions can be expressed as 

n - v ,  = n.V$+n .V  x v/  = 0, (26) 

n.V$ = 0 (27) 

along the free surface and the bottom, and 

au/., 
aY 

!P: = ul., = - = 0 on y = O,$b, 

along the sidewall and the central plane. 
The governing equation (25) and the boundary condition (27) are homogeneous. 

Hence the scalar potential $ for the present problem is trivial (i.e. rpn = 0, for n =# 0, 
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FIGURE 6. Vertical profiles of u, at several different distances from the sidewall on the plane x = -in: 
-, y / b  = 0.1; ---, y / b  = 0.3; ---, y / b  = 0.5; -----, the two-dimensional solutions: (a) R = 0; 
(b) R = 0.5; (c) R = 1.0 

and yo = an arbitrary constant). Our problem can be simplified significantly and the 
mass transport velocity can be written in term of the vector potential only: 

urn = v x Y. (30) 
When expressed in terms of the Fourier components of the vector potential and the 

vorticity, the Poisson equation (22) becomes 

(31) 
a2un a2vn 

ay2 a z 2  
-+-- 4n2Yn = -L2n-L2s,n, n = 0, f l ,  f 2 ,  ..., fN, 

where the subscript s represents the vorticity associated with the Stokes drift. The 
boundary conditions for Y, are given in (28) and (29). 

Substituting the Fourier components (24) into the transport equation for the steady 
vorticity, (4) ,  we obtain 

a2an a 2 0 n  -+-- 4n2Qn+fn = 0, n = 0, f l ,  f 2  )...) f N ,  
ay2 a 2 2  

wheref, are the Fourier coefficients of the nonlinear convection and vortex stretching 
term, i.e. 

N 

C f n e 2 i n x = V x ( v r n x m ) = m ~ V v r n - v r n ~ V m .  (33) 
n=-N 
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FIGURE 7. Contour lines of u, on the central plane ( y / b  = 0.5): (a) R = 0.5; (b) R = 1.0. 

The boundary conditions of the Fourier components of the vorticity, a,, can be 
obtained by substituting (24) into the boundary conditions derived from the previous 
section. For instance from (12) the boundary conditions on the free surface can be 
written as 

O",O on z=O,  (34) 

on z=O. (35) I sinh 2h 
sinh2 h 

5 2 Y , = O  for n i O  

= -(I - RR") 

Since the vorticity is solenoidal, the boundary condition for the vertical component of 
the vorticity becomes 

aa; 
-- - 0  on z=O.  

aZ 
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FIGURE 8. Contour lines of u, on the free surface ( z /h  = 0) :  (a) R = 0.5; (b )  R = 1.0. 

Similarly, the boundary conditions along the central plane, (1 5), can be converted into 
a Fourier component form : 

(37) 
aa; 

Q ; = O  s Z E = O ,  - = 0  on y = -  ib. 
aY 

At the bottom (z  = - h) the vorticity components can be written as 

Ql,=-%, aZ a;=-’?””, a Z  on z = - h .  (38) 

Note that u, and v, are specified along the bottom, (17). The normal derivatives 
of these velocity components are not known. A second-order finite-difference 
approximation will be employed to calculate these boundary conditions. 

Along the sidewall boundary, a similar situation exists. The vorticity components are 
written as 

(39) a,--, x - awn Qi=O, a:=-- aun on y = O ,  
aY aY 

in which u, and v, are given in (18). 
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Vm 

FIGURE 9. Vertical profiles of u, at several different distances from the sidewall on the plane 
x = - ~ E . -  4 ’  2 y/b=0.1;---,y/b=0.2;----,y/b=0.3;-----,y/b=0.5:(~)R~O;(b)R~0.5~ 
(c) R = 1.0. 

We remark here that the zero-net-flux condition across the vertical cross-section of 
the channel is naturally satisfied in the vorticity-vector potential approach. From (30) 
and (24) the streamwise mass transport velocity can be written as 

The net mass transport flux across a vertical plane normal to the direction of wave 
propagation is 

Integrating the above equation and employing boundary conditions (28) and (29), we 
can show that the net mass transport flux is zero, i.e. 
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FIGURE 10. Spanwise profiles of w, at several different elevations on the plane x = -in: -, 

(c) R = 1.0. 
z / h  = -0.8; ---, z / h  = -0.6; ---, z / h  = -0.4; -----, z / h  = -0.2; (a) R = 0 ;  (b) R = 0.5; 

5. Numerical scheme 

derivative term is introduced into the equation, i.e. 
The vorticity equation (32) is nonlinear. To solve it numerically, a fictitious time 

Therefore, the true solution is the steady-state limit of the above equation. 
Approximating (43) with a forward finite difference in time, we get 

D 2 D y 1 - ( 4 n 2 + ~ ) L 2 ~ '  = -@+:), n = 0,  + I ,  f 2 ,  ..., + N ,  (44) 

where 

and At is the time step. The superscripts, k and k+ 1, represent the time level. By using 
the implicit finite-difference scheme, (44), the original equation (43) has been linearized 
at the previous time level. Specifically, the nonlinear term can be expressed as 

(45) 
at.Ln-, urn,n-l - urn,, 'Ln-Z Qz-, 
a,.Ln-,urn,n-,-urn,,.Ln-,QY,-, 
9, *Ln-l wrn,n-l- urn,l *Ln-l  QL 1=-N 
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FIGURE 11. Contour lines of u,, wx and WY under a standing wave for 8 = 100: (a) streamwise mass 
transport velocity u, at x = -in; (b) streamwise vorticity ws at x = - in;  (c)  spanwise vorticity wY on 
the central plane ( y / b  = 0.5). 

where 

To calculate the mass transport velocity we must solve the vector potential first. The 
governing equation for the vector potential, (31), can be written as 

D2!Pk-4n2Yk = -521”,-52!,,. (46) 

Once YE is found, the mass transport velocity can be calculated from the definition, 
(30), i.e. 



Mass transport under partially reJected waves 135 

Z - 
h 

-an: 0 in: fn: 
X 

FIGURE 12. As figure 11 but for 6 = 0.1. 

The vorticity equation (44) and the vector potential equation (46) consist of six sets 
of Helmholtz equations. The spatial derivatives in those equations are approximated 
by the second-order central-finite-difference formulae. The resulting system of algebraic 
equations is solved by fast Fourier transforms. 

The numerical procedure can be summarized as follows : 
(i) Given the vorticity at the kth time level, the vector potential at the same time level 

is obtained by solving (46) with boundary conditions (28) and (29). 
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FIGURE 13. As figure 11 but for S = 0.08. 

(ii) The mass transport velocity at the kth time level is calculated from (47) and (48). 
The vorticity boundary conditions (38) and (39) along the bottom and the sidewall are 
computed using the current velocity values inside the domain. The first-order 
derivatives in the boundary conditions are approximated by a second-order finite- 
difference formula. 

(iii) The vorticity transport equation (44) is solved for the vorticity at the new time 
level, k +  1, subject to the boundary conditions (34), ( 3 9 ,  (36), (37), (38) and (39). 

(iv) Steps (i)-(iii) are repeated to obtain the numerical solutions at advanced time 
levels. Steady-state solutions are reached when the following condition is satisfied : 
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FIGURE 14. As figure 11 but for S = 0.06. 

6. Results and discussion 
In this section we present numerical results for the mass transport velocity pattern 

under partially reflected waves in a long wave tank with a rectangular cross-section. 
The effects of sidewalls, wave parameter 6 and geometric ratio, b/h,  on the three- 
dimensional mass transport pattern are investigated. Note that the reflection coefficient 
R is a complex-valued constant, i.e. R = 1Rle’’. However, the only impact of the phase, 
0, on the mass transport is to shift the flow pattern by to, i.e. x + x - @ .  This could be 
seen from the governing equations in $2 and the boundary conditions in $ 3 .  Hence, in 
the following discussions, R will be taken as a real constant, i.e. 0 = 0. 

6.1. Comparison between current results and existing solutions 

To verify the present numerical scheme we first obtain numerical solutions for the 
mass transport velocity in a progressive wave train (R = 0) in a channel with a square 
cross-section (b = h = 1). For this example the viscous effects are assumed to be 
dominant, 6 = 5 x lo5. Analytical solutions based on the conduction solution approach 
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FIGURE 15. Mass transport velocity profiles at x = -in for standing waves with different 8 :  -, 
6 = 0.06; ---, S = 0.08; ---, S = 0.1; -----, 8 = 100: (a) vertical profiles of u, on the central plane 
( y / b  = 0.5); (b) horizontal profiles of u, on the free surface; (c) horizontal profiles of u, on the free 
surface; (d )  vertical profiles of w, on the central plane ( y / b  = 0.5). 

are available (Mei et al. 1972). The agreement between the analytical and numerical 
solutions is excellent. In figure 1 the streamwise mass transport velocity u, on the 
central plane, y / b  = 0.5, is shown. The details of the circulation pattern for this case 
have been presented in Mei et al. (1972) and will not be repeated here. In the same 
figure the streamwise mass transport velocity for 6 = 0.1 is also plotted for comparison. 
The magnitude of the mass transport velocity on the central plane is reduced 
significantly when convection becomes important, i.e. small &values. The effects of 6 
on the three-dimensional flow patterns are discussed in $6.3. 

The second example for the purpose of verification concerns two-dimensional 
partially reflected waves, i.e. the sidewall effects are ignored. In the numerical 
computations the sidewall boundary conditions are altered : the spanwise gradients of 
all physical quantities are required to vanish, i.e. tl/tly = 0. The cross-section of the 
channel remains a square, b/h = 1 .O, and the wave parameters 6 is chosen to be 0.1. 
The streamwise mass transport velocity on the central plane at x = for the reflection 
coefficient R = 0.5 and 1 .O is compared with the numerical solutions by Iskandarani & 
Liu (1991) in figure 2. The numerical scheme used by Iskandarani & Liu (1991), which 
is limited to two-dimensional problems, is completely different from the present 
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FIGURE 16. Mass transport velocity profiles at x = -$t for standing waves with different water depth 
h(b  = l.O):-,h/b = O S - - , h / b  = I.O;----,h/b = 1.5:(u)verticalprofilesofumonthecentral 
plane ( y / b  = 0.5); (b) horizontal profiles of u, on the free surface; (c) horizontal profiles of u, on the 
free surface; ( d )  vertical profiles of w, on the central plane ( y / b  = 0.5). 

approach. However, the agreement between these two sets of numerical results is 
excellent. In the same figure numerical results for the three-dimensional problems 
where sidewalls are considered are also plotted for comparison. For the case R = 0.5 
the mass transport velocity is slower on and near the free surface, and the velocity is 
more uniform in the mid-depth section. 

6.2. Comparison between current results and experimental data 
Mei et al. (1972) reported a series of laboratory experiments measuring mass transport 
velocity under progressive waves (R = 0) in a wave tank. Using a dye tracing technique 
Mei et al. measured mass transport velocity not only on the central plane but also on 
a vertical plane near the sidewall. In their experiments the wavetank was 76 cm wide 
and water depth was kept 13 cm deep. Two sets of experimental data are compared to 
the present theory. The first set is for relatively deep water, kh = 2.59, while the second 
set is for kh = 1.02. In figure 3 the experimental data, Longuest-Higgins’ (1953) two- 
dimensional solutions and the present results for u, along the central plane are plotted 
for kh = 2.59; S = 0.059. The present solutions agree with the experimental data much 
better than Longuet-Higgins’ two-dimensional solutions do. In figure 4 the second set 
of laboratory data for u, on the plane 5 cm away from the sidewall (figure 4a) and on 
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FIGURE 17. Contour lines of u,, w” at x = --in for the standing wave with S = 0.1, h/b  = 1.5, 

b = 1 : (a) streamwise mass transport velocity urn; (b)  streamwise vorticity wz. 

the central plane (figure 4b) are shown. For this data set kh = 1.02 and S = 0.034. The 
scattering of the experimental data is partially caused by the unsteadiness of the mass 
transport velocity ; experimental data with different symbols were taken at different 
times. Despite the data scatter it is clear that the maximum backwards velocity is 
weaker and closer to the free surface on the plane near the sidewall. The present 
numerical solutions are produced for this case and are plotted. For the purpose of 
comparison Longuet-Higgins’ two-dimensional solutions, i.e. ignoring the sidewall 
effects, are also shown. The present results seem to agree with the experimental data 
better than Longuet-Higgins’ two-dimensional solutions do. 

In the following section, new numerical results for mass transport under a partially 
reflected wave train propagating in a rectangular channel are present. 

6.3.  Mass transport in a channel with a square cross-section 
In this section numerical results are obtained for a channel with a square cross-section, 
b = h = 1. Numerical computations were performed for different amplitudes (i.e. S- 
values) and reflection coefficients (R-values). 

In figure 5 the spanwise profiles of the streamwise mass transport velocity, u,, are 
plotted. These velocity profiles are for x = -in and z / h  = -0.8, -0.5, -0.2 and 0 
respectively. These results are obtained for 6 = 0.1 and R = 0,0.5, and 1.0 respectively. 
Note that u, varies periodically in the x-direction for a partially reflected wave but 
becomes uniform for a progressive wave (R = 0). For the standing wave (R = 1.0) the 
cross-section x = -in is the midpoint between a node and an anti-node. From figure 
5 we observe that the mass transport velocity, u,, along the sidewall ( y / b  = 0) is 
always positive. There is a small region, 0 < y / b  < 0.1, in which the mass transport 
velocity changes drastically. The mass transport velocity becomes more or less uniform 
in the y-direction outside this region. This suggests that there is a boundary layer 
formed outside of the Stokes boundary layer because of the small &-value. 

In figure 6 the vertical profiles of the mass transport velocity for the same set of 
parameters used in figure 5 are shown. These profiles are plotted for different planes 
parallel to the sidewall, y / b  = 0.1,0.3, and 0.5. There are slight differences between the 
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FIGURE 18. Contour lines of u,, wfl on the central plane ( y / b  = 0.5) for the standing wave with 
6 = 0.1, h / b  = 1.5 ,  b = 1 :  (a)  streamwise mass transport velocity u,; (6)  spanwise vorticity d. 

profiles at y / b  = 0.3 and 0.5. However, the velocity is weaker and the profile is 
considerably different near the sidewall ( y / b  = 0.1). The appearance of boundary 
layers near the free surface and the bottom for R = 0 and 0.5 is quite clear. However, 
for the standing wave ( R  = 1.0) the boundary layer near the free surface diminishes. 
For the progressive wave the mass transport velocity profile on the central plane is also 
shown in figure 1 .  As shown in figure 1 when 6 is increased the diffusion becomes 
important and the boundary-layer structure disappears even for the progressive case. 
For comparison the two-dimensional results (without the sidewall effects) are also 
shown in figure 6. The two-dimensional results are again without the boundary-layer 
structure and are remarkably different from those including the sidewall effects. 
Because urn varies periodically in the x-direction for a partially reflected wave, the 
contour lines of urn are plotted on the central plane ( y / b  = 0.5) in figure 7 and on the 
free surface ( z / h  = 0) in figure 8. The mass transport velocity contours evolve from 
parallel horizontal lines for the progressive wave ( R  = 0) to an antisymmetric cell 
structure for the standing wave ( R  = 1.0). Large velocity gradients are clearly visible 
near the bottom and the sidewall, indicating the existence of boundary layers. 
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FIGURE 20. As figure 19 but under a standing wave ( R  = 1.0). 

The vertical profiles of the spanwise mass transport velocity u, on the plane 
x = -in are shown in figure 9. For all cases ( R  = 0, 0.5 and 1.0) urn is negative in the 
upper region (near the free surface), and positive in the low region (near the bottom). 
Therefore fluid particles move towards the sidewalls in the upper region and move 
away from the sidewalls towards the central plane in the lower region. The vertical 
component of the mass transport velocity is shown in figure 10 for different reflection 
coefficients. Near the sidewall the mass transport moves downwards on all elevations 
and the mass transport velocity component becomes positive near the middle of the 
tank. So a fluid particle which starts initially near the central plane and just beneath 
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FIGURE 21. As figure 20 but for h/b = 0.5. 

the free surface will move towards the sidewall and rise slightly. As the particle moves 
close to the sidewall, it starts to move downwards. When the particle drops to the mid- 
depth level, it begins to move away from the sidewall. Eventually it will rise towards 
the free surface again near the central plane. The circulation pattern will be repeated. 
Of course one should keep in mind that the particle is also transported by the 
streamwise mass transport velocity, u,. Therefore the particle will not stay in the same 
vertical plane perpendicular to the x-direction. A very complex three-dimensional drift 
pattern exists in the channel caused by the sidewall effects. 

The effects of 6 (nonlinearity) on the mass transport velocity pattern are shown for 
the standing waves only. The contour lines of the streamwise mass transport u, and 
the streamwise vorticity w” at x = --in (midpoint between nodal and anti-nodal point) 
as well as the spanwise vorticity wY on the central plane (y/b = 0.5) are plotted in 
figures 11, 12, 13, and 14 for 6 = 100, 0.1, 0.08, and 0.06, respectively. The vertical 
profiles of the streamwise velocity u, and the vertical velocity w, on the central plane, 
and the horizontal profiles of u, and the spanwise velocity v, on the free surface 
(z/h = 0) are shown in figure 15. The dependence of mass transport on the &-values is 
apparent. For a large &-value (figure 11) diffusion dominates and vorticities are diffused 
into the interior region. As the 6-value decreases, convection becomes more important 
and vorticities are confined in the boundary layers adjacent to the bottom and the 
sidewall (figures 13 and 14). 

6.4. Mass transport in channels with diflerent geometric ratios (h/b) 
To investigate the effects of the tank geometry, we present here numerical results for 
standing waves in rectangular channels with different geometric ratios, i.e. h/b-values. 
The vertical profiles of the streamwise velocity u, and the vertical velocity w, on the 
central plane (y/b = O S ) ,  and the horizontal profiles of u, and the spanwise velocity v, 
on the free surface ( z / h  = 0) are shown in figure 16 for h/b = 0.5, 1.0, 1.5. When h/b 
is small (the tank is relatively wide and the depth is relatively shallow), the horizontal 
velocity components (u,, v,) become large, while the vertical component w, is small. 
The boundary-layer structure near the sidewalls is also more prominent. For a wider 
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tank, (h /b  = 0.5) the vertical profile of the streamwise mass transport velocity u, on 
the central plane, at x = -in, resembles that of the two-dimensional case (without the 
sidewalls shown in figure 6(c). Away from the sidewalls, the bottom boundary has 
more important effects on the mass transport in the core region. The contour lines of 
the streamwise mass transport u, and the streamwise vorticity ox at x = -in for 
h / b  = 0.5 are shown in figure 17. Figure 18 shows the contour lines of the streamwise 
velocity u, and the spanwise vorticity wy on the central plane for the case with the same 
parameters as in figure 17. The distributions of the mass transport velocity outside the 
sidewall boundary layer are more uniform for the channel with smaller h /b  values. 
Vorticity is mostly confined to the neighbourhood of the sidewalls and the bottom. 

Figures 19,20 and 21 present the projection of mass transport velocity on the planes 
parallel to the sidewalls ( y / b  = constant). In figure 19 the water depth is h = 1.0, and 
the reflection coefficient R is 0.5. Figures 20 and 21 are for standing waves (R = 1.0). 
In figure 21 the depth is shallower, h = 0.5, while h = 1.0 in figure 20. In all these cases 
S is 0.1 and the width b is 1 .O. The vectors in these figures are the two-dimensional mass 
velocity vectors formed by (u,, w,) on the y-plane. 

7. Concluding remarks 
A vorticity-vector potential scheme with a Fourier spectral method has been 

developed to study the three-dimensional mass transport induced by partially reflected 
waves in a rectangular channel. Attentions have been focused on three issues: (i) the 
effects of the sidewalls on the mass transport pattern; (ii) the effects of the wave 
amplitude (8-values) and (iii) the effects of the tank geometric ratio (h/b-values). 
Numerical results show that the presence of the sidewalls generates complicated three- 
dimensional mass transport velocity patterns. Even for a relatively wide channel, e.g. 
b /h  = 6, the mass transport velocity, u,, under a progressive wave is still influenced by 
the sidewall effects (see figure 3 and 4). Therefore in performing laboratory experiments 
one must be precise about the location of the sampling points. Moreover, the mass 
transport velocity has a spanwise component which moves particles from the central 
region of the tank towards the sidewall near the free surface and from the sidewall 
region towards the central plane in the lower half of the depth. This flow pattern is not 
very sensitive to reflection coefficient. The wave amplitude (or &-parameter) also plays 
an important role in determining the mass transport velocity pattern. When S is small 
or the amplitude is large convection is important and diffusion is significant only within 
a small region (double boundary layer) adjacent to the Stokes layers. 

High-quality experimental data are rare. The present theoretical results have been 
compared with Mei et aZ.’s (1972) data; the agreement is reasonable. With new sensors 
such as laser Doppler velocimetry detailed measurements of three-dimensional mass 
transport should be obtained. 
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